TED (15)	4032
(Revision	- 2015)

A20 - 01658

Reg. No.		
Signature	 	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2020

DIGITAL ELECTRONICS AND MICROPROCESSORS

[Maximum Marks: 75] [Time: 2.15 Hours]

PART-A

(Answer any three questions in one or two sentences. Each question carries 2 marks)

- I. 1. Draw the symbols of two input NAND and NOR gate.
 - 2. Give the decimal equivalents for each of the following binary numbers.
 - (a) 110101 (b) 11001.001
 - 3. Define a flip flop. Draw the symbol of positive edge triggered RS Flip flop.
 - 4. List the need of a register.
 - 5. Define the term microprocessor.

 $(3 \times 2 = 6)$

PART-B

(Answer any *four* of the following questions. Each question carries 6 marks)

- II 1. Convert the hexadecimal number (AF8C.2B)₁₆ to decimal number. Show the steps.
 - 2. Prove the universality of NAND gate.
 - 3. State and explain De-Morgan's theorem.
 - 4. List the application of flip flop.
 - 5. Differentiate between combinational and sequential circuits.
 - 6. Explain the need for ADC and DAC converters.
 - 7. Explain the special purpose registers used in 8085.

 $(4 \times 6 = 24)$

PART-C

(Answer *any of the three units* from the following. Each full question carries 15 marks)

UNIT – I

- III (a) Convert the decimal number 250.5 to its binary and hexadecimal equivalent. (7)
 - (b) Derive the EX-OR gate from universal gates and draw its symbol and truth table. (8)

IV	(a)	Draw the logic implementation of following output expression using basic gates.	
		$Y = \bar{A} + B (C+D)$	(7)
	(b)	What is 1's complement and 2's complement of a binary number. Write the 1's and 2's	
		complement of 1010101.	(8)
V	(a)	UNIT - II Write the canonical sum of product form of the function $Y = AB + ACD$.	(7)
	(b)	Draw the logic diagram of a Master Slave JK flip lop and explain its operation with	
		Truth table.	(8)
		OR	
VI	` ′	Minimize the following expression using K-map. $F(A,B,C) = \sum (1,2,3,5,7)$.	(7)
	(b)	Draw the logic circuits and give truth table for the following.	
		(a) Half adder (b) Half subtractor	(8)
		UNIT- III	
VII	(a)	Draw the schematic diagram of a 4-bit Parallel IN – Parallel OUT shift register using	
		negative edge triggered D-Flip flop and explain how a data 1101 is stored.	(7)
	(b)	Explain any two types of A/D converter.	(8)
		OR	
VII	I (a)	Explain the concept of R-2R ladder network for D/A conversion.	(7)
	(b	Explain the operation of a 4-bit synchronous counter. Also draw its timing diagram.	(8)
		UNIT - IV	
IX	(a)	Explain different buses used in 8085 microprocessor.	(7)
	(b)	Draw the internal architecture of 8085 microprocessor and label it.	(8)
OR			
X	(a)	Explain the addressing modes of 8085 microprocessor.	(7)
	(b)	Draw the schematic pin diagram of 8085 microprocessor.	(8)
